Tension-Tension Fatigue Behavior of Unidirectional C/Sic Ceramic-Matrix Composite at Room Temperature and 800 °C in Air Atmosphere
نویسنده
چکیده
The tension-tension fatigue behavior of unidirectional C/SiC ceramic-matrix composite at room temperature and 800 °C under air has been investigated. The fatigue hysteresis modulus and fatigue hysteresis loss energy corresponding to different number of applied cycles have been analyzed. The fatigue hysteresis loops models for different interface slip cases have been derived based on the fatigue damage mechanism of fiber slipping relative to matrix in the interface debonded region upon unloading and subsequent reloading. The fiber/matrix interface shear stress has been estimated for different numbers of applied cycles. By combining the interface shear stress degradation model and fibers strength degradation model with fibers failure model, the tension-tension fatigue life S-N curves of unidirectional C/SiC composite at room temperature and 800 °C under air have been predicted.
منابع مشابه
Comparisons of Damage Evolution between 2D C/SiC and SiC/SiC Ceramic-Matrix Composites under Tension-Tension Cyclic Fatigue Loading at Room and Elevated Temperatures
In this paper, comparisons of damage evolution between 2D C/SiC and SiC/SiC ceramic-matrix composites (CMCs) under tension-tension cyclic fatigue loading at room and elevated temperatures have been investigated. Fatigue hysteresis loops models considering multiple matrix cracking modes in 2D CMCs have been developed based on the damage mechanism of fiber sliding relative to the matrix in the in...
متن کاملDamage Evolution and Life Prediction of Cross-Ply C/SiC Ceramic-Matrix Composite under Cyclic Fatigue Loading at Room Temperature and 800 °C in Air
The damage evolution and life prediction of cross-ply C/SiC ceramic-matrix composite (CMC) under cyclic-fatigue loading at room temperature and 800 °C in air have been investigated using damage parameters derived from fatigue hysteresis loops, i.e., fatigue hysteresis modulus and fatigue hysteresis loss energy. The experimental fatigue hysteresis modulus and fatigue hysteresis loss energy degra...
متن کاملIn Situ Formation of SiC/CNT Ceramic Nanocomposite by Phenolic Pyrolysis
In this research, using pyrolysis of phenolic resin in the presence of silicon particles, the SiC ceramic composite is formed. The samples were prepared by introducing 30, 35, 40, 45 and 50 wt% of Si particles to the phenolic resin. The samples were cured at 180°C then carbonized at 1100°C. The final carbonized C/Si composites are hot-pressed at 1500°C in inert atmosphere, which is more than th...
متن کاملFatigue Damage and Lifetime of SiC/SiC Ceramic-Matrix Composite under Cyclic Loading at Elevated Temperatures
In this paper, the fatigue damage and lifetime of 2D SiC/SiC ceramic-matrix composites (CMCs) under cyclic fatigue loading at 750, 1000, 1100, 1200 and 1300 °C in air and in steam atmosphere have been investigated. The damage evolution versus applied cycles of 2D SiC/SiC composites were analyzed using fatigue hysteresis dissipated energy, fatigue hysteresis modulus, fatigue peak strain and inte...
متن کاملFrictional heating in a unidirectional fibre-reinforced ceramic composite
Holmes and Shuler [1] recently found that significant internal heating occurs during the cyclic loading of fibre-reinforced ceramics. In their investigation, conducted with cross-ply carbon fibre/SiC matrix composites (hereafter referred to as Cf/SiC), it was observed that the extent of internal heating was strongly influenced by the peak fatigue stress and loading frequency. For example, durin...
متن کامل